首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3161篇
  免费   778篇
  国内免费   1986篇
测绘学   77篇
大气科学   1878篇
地球物理   547篇
地质学   1081篇
海洋学   1826篇
天文学   26篇
综合类   179篇
自然地理   311篇
  2024年   18篇
  2023年   66篇
  2022年   157篇
  2021年   196篇
  2020年   225篇
  2019年   208篇
  2018年   202篇
  2017年   222篇
  2016年   191篇
  2015年   183篇
  2014年   260篇
  2013年   345篇
  2012年   235篇
  2011年   247篇
  2010年   204篇
  2009年   261篇
  2008年   297篇
  2007年   307篇
  2006年   301篇
  2005年   269篇
  2004年   191篇
  2003年   213篇
  2002年   159篇
  2001年   147篇
  2000年   145篇
  1999年   87篇
  1998年   88篇
  1997年   74篇
  1996年   68篇
  1995年   77篇
  1994年   74篇
  1993年   36篇
  1992年   44篇
  1991年   30篇
  1990年   17篇
  1989年   17篇
  1988年   19篇
  1987年   6篇
  1986年   9篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   5篇
  1978年   1篇
  1977年   2篇
  1954年   2篇
排序方式: 共有5925条查询结果,搜索用时 291 毫秒
991.
ABSTRACT

The Upper Triassic Langjiexue Group, which lies immediately south of the Yarlung-Tsangpo Suture Zone in the Shannan area of southeastern Tibet, represents an important part of the Tethyan Himalayan Sequence (THS). Its provenance and palaeogeography have been the subject of debate. We present new data on petrographic composition, whole-rock geochemistry, and detrital zircon U–Pb geochronology to constrain the provenance of the Langjiexue Group. The dominance of quartz grains and felsic volcanic lithic fragments suggests that the sandstones are litho-quartzose. The trace element geochemical signatures (V–Ni–Th*10, Co/Th–La/Sc, Eu/Eu*–Th/Sc) suggest derivation from felsic igneous sources. The detrital zircon age spectra display three major peaks: a Meso-to-Neoproterozoic peak (1200–900 Ma, 7–18%), a Neoproterozoic-to-Late Cambrian peak (750–500 Ma, 32–65%), and a Late Carboniferous-to-Late Triassic peak (300–200 Ma, 11–33%). The maximum depositional age of early Carnian (236–235 Ma) is obtained by calculating weighted average ages of the youngest zircons (≤250 Ma). The youngest age cluster (300–200 Ma) is incompatible with sources from neighbouring terranes, including the South Qiangtang terrane, Lhasa terrane, THS, and Higher Himalayan Crystalline. Correlations of the Permian–Triassic zircons with those of time-equivalent strata in northwest Australia, west Burma, and the Banda Arc unveil a potential connection to the Tasmanides along the convergent margin of eastern Australia. The New England Orogen (300–230 Ma) could have supplied the Langjiexue Group with magmatic materials via continent-scale drainage systems or a submarine fan complex. This scenario provides a new perspective into the transport of detritus from distal orogens to sedimentary basins thousands of kilometres away.  相似文献   
992.
ABSTRACT

The West Junggar terrane (WJT) is an outstanding laboratory for studying the tectonic evolution of the Junggar–Balkhash Ocean, because it contains widespread Paleozoic magmatism in different tectonic settings. We attempt to reconstruct the tectono-magmatic evolution of WJT through U–pb analysis of detrital zircons from three modern river sand samples from the Harabura, Baibuxie, and Aletengyemule rivers in the Barleik Mountains of the central WJT. A total of 232 concordant spots show Th/U ratios of 0.14–1.69, typical of igneous origin, and they contain abundant Paleozoic (96%) and few Precambrian (4%) ages, with major age populations at 450–530, 400–430, 320–380, and 265–320 Ma. The first two groups may be derived from the early subduction- and accretion-related magmatic rocks of the WJT, whereas the third group is congruent with magmatic activities related to the final subduction and basin-filling processes within a framework of the remnant Junggar–Balkhash Ocean. By combining with the regional data, the last group of magmatic events is referred to as post-subduction magmatism. The missing Mesozoic–Cenozoic magmatism clearly indicates a pre-Permian closure for the Junggar–Balkhash Ocean, nearly coeval with the closure of other oceans in the southwestern Palaeo-Asian Ocean.  相似文献   
993.
《International Geology Review》2012,54(13):1594-1612
ABSTRACT

The mechanism that triggered large-scale Late Mesozoic magmatism in the northeastern Great Xing’an Range (NE GXAR) is strongly controversial. In this paper, we present whole rock geochemistry and zircon trace element, U-Pb and Hf isotopic data on the volcanic rocks in the Longjiang and Guanghua formations in the northeastern Xing’an Block. Zircons with ages of 120–119 Ma indicate that these volcanic rocks were formed in the Early Cretaceous. Combined with previous data, it is clear that volcanic rocks in the NE GXAR erupted between 128 and 108 Ma. The andesite samples of the Longjiang Formation show high contents of Al2O3, CaO, and MgO, significant negative Nb, Ta, and Ti anomalies; εHf (t) values of zircons from the andesite sample vary from +4.13 to +7.67, indicating an enriched mantle source. The rhyolites of the Guanghua Formation show high SiO2 and K2O concentrations, low P2O5, MgO, Cr, and Ni contents and Mg# values. The positive εHf (t) values (+5.72 to +10.58) with two-stage Hf model ages ranging from 939 to 701 Ma indicate that the rhyolites are derived from the partial melting of basaltic lower crust. Combined with the regional geological evolution, we conclude that the generation of the Early Cretaceous volcanic rocks in the NE GXAR might be triggered by the dehydration, disintegration, and foundering of the Mongol-Okhotsk Oceanic flat-slab and the subsequent upwelling of the asthenosphere.  相似文献   
994.
A simplified box model of the cooling of a salt-stratified ocean is analyzed analytically and numerically. A large isothermal basin of salt water has a layer of fresh water at the surface. Beside this is a small basin, cooled from above and connected to the large basin by horizontal tubes at the top, middle and bottom. For small cooling rate, fresh water enters the small basin, is cooled and leaves through the middle tube. For greater cooling rate, the fresh water leaves the small basin through the middle and bottom tube. If the top tube is smaller than the deeper tubes and the fresh water layer is sufficiently shallow, flow in the middle tube reverses at a critical cooling rate. In this case, a mixture of salt and fresh water is cooled and leaves the bottom tube. Increased cooling produces much greater flow rate; consequentially temperature increases rather than decreases in the small basin. A relaxation heat flow condition results in multiple equilibria. One of the stable modes has fresh surface water descending in the small basin and flowing out through the middle and bottom tube. The other has a greater rate of flow of both fresh and salty water (through the middle tube) into the basin with the flow of mixed salty water out of the bottom tube. Implications for deep convection in the ocean are discussed.  相似文献   
995.
A stochastic simulation technique was used with ship wave observations, which form the largest world-wide data base of wave information. Twenty years of wave parameter (height, period, and direction) observations from the Comprehensive Ocean–Atmosphere Data Set (COADS) were used as the input data. Simulations were compared to four years of wave parameters from a National Data Buoy Center (NDBC) data buoy near Monterey Bay, CA. The comparisons are satisfactory with differences mainly caused by biases between ship observations and buoy data. The stochastic simulation technique is attractive because it is computationally efficient and few decisions are required for its application. The applied techniques can be employed with global COADS data to simulate wave conditions at many world-wide locations where measurements and hindcasts by computer models do not exist.  相似文献   
996.
Bayana Basin, sited along the eastern margin of the north Delhi fold belt of the Aravalli Craton, contains an ~3000?m-thick sequence comprising one volcanic and seven sedimentary formations of the Delhi Supergroup. The sedimentary units are the Nithar, Jogipura, Badalgarh, Bayana, Damdama, Kushalgarh, and Weir formations in order of decreasing age. Petrographic study of the sandstones as well as major and trace elements (including rare earth elements) and bulk-rock analyses of the shales and sandstones allow the determination of their provenance, source-rock weathering, and basinal tectonic setting. The sandstones are quartz rich and were derived mainly from exhumed granitoids typical of a craton interior. Geochemical patterns of the sandstones and shales are similar. However, trace element abundances are low in sandstones, probably due to quartz dilution. The coarser clastic Damdama and Weir sandstones, which occur at higher stratigraphic levels, have strikingly low trace element concentrations compared with the underlying Bayana and Badalgarh sandstones. All samples show uniform LREE-enriched patterns with negative Eu-anomalies (Eu/Eu*?=?0.16–0.23) and are similar to those of post-Archaean Australian shales (PAAS). However, the (La/Yb) n ratios (averages 11–18) of all the sedimentary units are higher than those of PAAS, except for the Bayana Sandstone, which has low values (average 6.77). The chemical index of alteration (70–78) and the plagioclase index of alteration (87–97) values and the A–CN–K diagram suggest moderate to intense weathering of the source area.

The provenance analyses indicate that basin sedimentation was discontinuous. It received input from a terrain comprising granitoids, mafic rocks, sedimentary sequences, and tonalite-trondhjemite-granodiorite (TTG) suites. The Nithar and Badalgarh sandstones received input from a source consisting predominantly of granitoids. The succeeding Damdama and Weir sandstones received debris from granitoids and TTG in different proportions. The Kushalgarh shale was possibly derived from a source consisting granites and mafic rocks with a TTG component. The pre-existing sedimentary formations also contributed intermittently during the different phases of sedimentation.

Bulk-rock geochemical data suggest Mesoarchaean gneisses and late Archaean granites of BGC/BGGC (Banded Gneissic Complex/Bundelkhand Granitic Gneiss Complex) basement as possible source terrains. These data indicate deposition in a continental rift setting. The coeval formation of many rift-related Proterozoic sedimentary basins in the BGC/BGGC terrain suggests that the North Indian Craton underwent major intracratonic extension during Proterozoic time, probably triggering the break up of Earth's first supercontinent.  相似文献   
997.
《International Geology Review》2012,54(12):1435-1449
Recent research has identified an early to late Carboniferous magmatic arc that extends from Suzuo Qi to Xiwu Qi in Inner Mongolia, China, but the eastern extension of this arc is unknown. Understanding the relationship between this arc and the Hegenshan ophiolite belt and Xilamulun Solonker suture zone is important to our understanding of the tectonic evolution of the late Palaeozoic Palaeo-Asian Ocean. Here, we present new zircon laser ablation–inductively coupled plasma mass spectrometry U–Pb and geochemical data for the Maoliger quartz monzodiorites within the Jalaid Qi area. The Maoliger quartz monzodiorites formed at 329 ± 2 Ma, are low-K and tholeiitic, and have geochemical signatures indicative of formation within a magmatic arc. These rocks are large-ion lithophile element (e.g. Rb, Ba, and Sr)-enriched and high-field-strength element (e.g. Nb and Ta)-depleted. Combined with previously published researches, it is suggested that the quartz monzodiorites within the Jalaid Qi area formed contemporaneously with and are geochemically similar to quartz diorites of the Xiwu Qi area and the Baolidao pluton in the Suzuo Qi area. This indicates that the early to late Carboniferous magmatic arc in this region extends eastward to the Jalaid Qi area. This arc is located in an area parallel to a southerly early Permian magmatic arc, suggesting that the Palaeo-Asian Ocean subduction zone migrated south between the early Carboniferous and early Permian. The new data show that the Palaeo-Asian Ocean closed after the late Carboniferous.  相似文献   
998.
李奋其  刘伟  张士贞  王保弟 《地质通报》2012,31(9):1420-1434
朱拉岩体位于冈底斯带东部,主要由黑云母二长花岗岩组成,其中发育闪长质包体,二者呈渐变过渡关系。3件寄主岩石LA-ICP-MS锆石U-Pb年龄加权平均值分别为64.6Ma±0.8Ma、64.3Ma±0.8Ma和63.9Ma±0.5Ma,含776Ma的继承岩浆锆石。1件闪长质包体样品年龄加权平均值为66.1Ma±0.3Ma。闪长质包体低Si,中Mg(Mg﹟平均41.1),属铝质高钾钙碱性系列,Nb/Ta值为22,Sr/Y值为3.69,稀土元素分馏较低,LREE/HREE平均值为1.92,Eu强烈亏损,富集大离子亲石元素(Rb、K、U、Th),亏损高场强元素(Nb、Ta、Sr、Ti),暗示岩浆成分主要为幔源。寄主岩石富Si、K,贫P,属铝质—偏铝质钙碱性—高钾钙碱性系列,Nb/Ta值15.9,富集大离子亲石元素(Rb、K、Th),亏损高场强元素(Nb、Ta、Ba、P、Ti),具有活动陆缘钙碱性岩系的微量元素分布特征。寄主岩石与闪长质包体具有密切的成生联系,闪长岩形成于富集俯冲带组分的地幔熔体,在上升过程中混染了一定量的壳源物质结晶分异产物,寄主岩石则为底侵作用产生的大量壳源熔体与少量幔源熔体混合并发生一定程度分离结晶后的产物。结合前人的研究成果,认为古新世朱拉岩体与雅鲁藏布江大洋的向北消减有关。  相似文献   
999.
巴音苏赫图二长花岗岩位于西伯利亚板块东南缘陆缘增生带与二连—贺根山板块对接带北缘之间。该岩体由石炭纪及三叠—侏罗纪两期花岗岩组成,均以高硅、富Al2O3、K2O、Na2O,贫MgO、CaO为特征。微量元素表现为富集LILE、亏损HFSE。弱富集LREE,Eu负异常明显。岩石学和地球化学综合研究表明:两期花岗岩早期为高钾钙碱性、准铝质-过铝质花岗岩碰撞期I型花岗岩,晚期花岗岩具有A型花岗岩特点。Sr-Nd同位素研究表明:石炭纪二长花岗岩(87Sr/86Sr)i比值较低(0.700 62~0.704 82),εNd(t)为正值(0.9~1.5),岩浆来自于增生的岛弧或年轻的幔源物质,在岩浆上升过程中遭受了少量地壳物质的混染;晚三叠世—早侏罗世花岗岩(87Sr/86Sr)i比值较高(0.709 96~0.710 19),εNd(t)较低,为-0.3~0.3,该期次花岗岩与晚石炭世花岗岩同源,受地壳混染程度相对较高。应用LA-ICP-MS法测得石炭纪花岗岩U-Pb年龄为(296±3.5)Ma,结合区域构造演化特点及所测三叠纪花岗岩的地球化学特征认为,在晚石炭世,南蒙古额尔德尼查干地区已进入碰撞期构造环境,在三叠—侏罗纪仍有同碰撞花岗岩侵入,晚石炭世以后的碰撞期持续时间较长。  相似文献   
1000.
双TC和梅雨锋共同作用下的一次暴雨过程分析   总被引:2,自引:1,他引:2  
通过NCEP再分析资料计算各种物理量和应用卫星云图、雷达资料,并用WRF中尺模式做数值模拟,从动力过程、水汽输送过程、中小尺度系统等3个方面对TC和梅雨锋共同作用在浙北产生的一次暴雨过程进行分析。结论如下:(1)动力过程特点:300 hPa急流出口区辐散,中层3支气流汇合形成变形场锋生,产生强烈上升运动。低层TC外围的东南气流输入暖平流和湿位涡,使海上台风倒槽向北传播发展,最终形成气旋。TC高层流出气流对梅雨锋南侧垂直环流的维持有利;(2)水汽主要由两个TC外围的环流输送;(3)卫星云图和雷达回波显示有不同的降水云团合并且有加强的过程。用WRF中尺模式做数值模拟显示:700 hPa中小尺度的切变线或辐合区与强降水回波相对应。过程主要特点是中低层两个TC外围的气流与西风带气流在华东地区汇合,形成变形场锋生,产生强烈的辐合上升。在不同的气流汇合后产生了强急流输送水汽,加强垂直环流和中小尺度的辐合,是强降水产生的主要原因。西南季风经过台风绕流后在合适的环境场下仍有可能到达华东地区,这时往往与中纬度西风带汇合,在这种情况下会加强梅雨降水。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号